
5فصل 
همروندی

SYNCHRONIZATION

علی روانگرد: استاد 



مفاهیم اولیه•

(Synchronization)همگام سازی •

.اگر بین فرایندها وابستگی وجود داشته باشد، ترتیب درست انجام کارها باید رعایت شود•

شرایط رقابتی•

.فرایندها در فعالیت های بحرانی یکدیگر مداخله نکنند و شرایط رقابتی برای آن ها رخ ندهد•

منبع بحرانی•

.که چند فرایند برای دسترسی به آن رقابت می کنند( مانند چاپگر)منبع غیراشتراکی •

(Critical Region)ناحیه بحرانی •

.بخشی از برنامه که از منبع بحرانی استفاده می کند•



گرسنگی•

.هستندRمتناوبا نیازمند دسترسی به منبع CوBو Aفرض کنید هر یک از سه فرایند •

از ناحیه بحرانی، یکی از Aبا خروج . این منبع را در اختیار گیرد در فرایند دیگر در انتظار آن منبع، به تاخیر انداخته می شوندAوقتی •

.را در اختیار گیرندRدو فرایند باید 

داده شود و مکررا این Cرا بکند و بعد از پایان، اجازه به Rدرخواست Aرا بگیرد و قبل از پایان بخش بحرانی مجددا Rمنبع Cاگر •

.محروم می ماند و گرسنگی می کشدRبه صورت نامحدود از دسترسی به منبع Bادامه یابد، Cو Aعمل بین 



:خروجی های ممکن در صورت اجرای همروند و موازی دو پروسس زیر: مثال•

1234: A → B

3421: B→A

1342: A(1) → B →A(2)

3124: B(1) →A → B(2)

1324 : A(1)→B(1)→A(2)→B(2)

3142 : B(1) →A(1) → B(2) →A(2)

A(void){

while(true){

cout << 

1;

cout<<2;

}

}

B(void){

while(true){

cout<<3;

cout<<4;

}

}



صفر باشد، بعد از اجرای کامل دو aدر صورتی که مقدار اولیه متغیر سراسری . دو فرایند زیر به صورت هم روند اجرا می شوند: مثال•

فرایند، چه حالت هایی می تواند رخ دهد؟

یعنی در هر لحظه از اجرای فرایند، امکان وقوع وقفه و سوییچ به فرایند . نیز وجود داردinterleavedامکان اجرای آنها به صورت )•

(دیگر وجود دارد

• P1 → P2 ➔ a = b = c = 1

• P2 → P1 ➔ a = 1, b = 0, c = 0

• P2(1) → P1 →P2(2) ➔ a = 1, b=0, c=1

P1 P2

a = 1; b = a;

c = a;



مثال•

:چند خروجی حاصل از اجرای همروند دو پردازنده•

• (AB) (CD) : P1 → P2

• A(CD)B : P1(1) → P2 → P1(2)

• ACDB: P1(1) → P2 → P1(2)

P1 P2

Repeat

print “A”

print ”B”

forever

Repeat

print ”C”

print ”D”

forever



همکاری فرایند های همروند•

:شرایطی که باید رعایت شود تا یک همکاری درست و کارا بین فرایندهای هم روند برقرار باشد•

(mutual exlcusion)انحصار متقابل-1•

یه بحرانی خود از بین فرایندهایی که برای یک منبع یکسان دارای ناحیه بحرانی هستند، در هر لحظه فقط یک فرایند مجاز است که در ناح•

.باشد

(progressive)پیشرفت -2•

ود را اجرا فرایندی که فعلا تصمیم به ورود به ناحیه بحرانی را ندارد و در ناحیه غیر بحرانی می باشد و دستورالعمل های عادی برنامه خ•

(امکان ممانعت نداشته باشد. )می کند، نباید در تصمیم گیری برای ورود فرایند های دیگر به ناحیه بحرانی شرکت کند



(bounded waiting)انتظار محدود -3•

.وندیعنی نباید دچار گرسنگی و بن بست ش. باید مدت انتظار فرایندهایی که نیاز به ورود به ناحیه بحرانی دارند، محدود باشد•

.به مدت نامعلوم و بدون حد بالای مشخص، منتظر فرایندهای دیگر بودن: گرسنگی•

.تا ابد منتظر ورود به ناحیه های بحرانی خود بودن: بن بست•

وریتم همچنین الگ. شرط بالا مسُله را باید در حالت کلی حل کرد و فرضی برای ساده سازی راه حل به کار نبرد3البته علاوه بر رعایت •

.در حالت قطعی و غیرتصادفی داشته باشد



رویکرد های انحصار متقابل•

.برای تحقق انحصار متقابل، پیشنهادهای مختلفی وجود دارد•

.این راه حل ها را به صورت چهار رویکرد زیر، دسته بندی می کنیم•

نرم افزاری-1•

(CPUبا کمک دستورالعمل های خاص )با حمایت سخت افزار -2•

(با کمک فراخوان های سیستمی خاص)با حمایت سیستم عامل -3•

(با کمک کامپایلر)با حمایت زبان برنامه سازی -4•



رویکردهای نرم افزاری انحصار متقابل•

.مستقیما توسط برنامه ها استفاده می شوند و وجود حافظه اشتراکی ضروری است•

.حمایتی از سیستم عامل و زبان برنامه سازی نداریم•

.اولین شخصی که یک راه حل نرم افزاری دو فرایندی برای مسئله انحصار متقابل ارائه داد: Deckerالگوریتم •

•Deckerبا پنج مرحله تلاش راه حل درست رسید.



(تناوب قطعی)تلاش اول •

P0(){

while(TRUE)

{

while(turn !=0);

critical-section();

turn=1;

non-CS();

}

}

P1(){

while(TRUE)

{

while(turn !=1);

critical-section();

turn=0;

non-CS();

}

}



.شرط پیشرفت را رعایت نمی کند•

:سناریو•

است که وارد p0حال نوبت . می باشد0برابر turnوارد ناحیه بحرانی شود و کارش تمام شده و به بخش غیربحرانی برود، p1اگر •

.ناحیه بحرانی شود، ولی میخواهد به مدت طولانی در ناحیه غیربحرانی بماند

•p1اما چون . و قصد ورود مجدد به ناحیه بحرانی را داردبه سرعت کارش در ناحیه غیربحرانی تمام شدهturn برابر صفر است در حلقه

p1پس . بتواند وارد ناحیه بحرانی شودP1کرده تا 1را turnوارد ناحیه بحرانی شده و بعد از خروج، P0انتظارمی ماند تا بالاخره 

.توسط فرایندی منتظر مانده بود که در ناحیه بحرانی نبود و جلوی پیشرفتش را گرفته بود



تلاش دوم•

ه ند دیگر بتواند بهر فرایند دارای کلید مجزا برای ورود به ناحیه بحرانی است تا اگر فرایندی قصد استفاده ازناحیه بحرانی را نداشت، فرای•

.  ناحیه بحرانی حود دسترسی داشته باشد

P0(){

while(TRUE)

{

while(flag[1]);

flag[0]  = TRUE;

critical-section();

flag[0] = FALSE;

non-CS();

}

}

P1(){

while(TRUE)

{

while(flag[0]);

flag[1]  = TRUE;

critical-section();

flag[1] = FALSE;

non-CS();

}

}



.انحصار متقابل رعایت نمی شود•

:سناریو•

می بیند و برای ورود به falseرا خوانده و آن را flag[0]اجرا شود و flag[0] ،p1کردنtrueمی بیند اما قبل از falseرا خوانده و آن را p0 ،flag[1]فرایند •
.کرده و این فرایند هم وارد ناحیه بحرانی می شودtrueرا flag[0]سوئیچ شده و p0در این زمان به . وارد می شودp1کرده وtrueرا flag[1]ناحیه بحرانی 

.به علت امکان گرسنگی شرط انتظار محدود رعایت نمی شود•

:سناریو•

بعد از پایان کوانتوم، پردازنده . نمی تواند وارد ناحیه بحرانی شودp1است، trueبرابرflag[0]چون . سوئیچ می شودp1در ناحیه بحرانی است و به p0فرض کنید •
مجددا P0. شودی داده شده و این فرایند سریعا ناحیه بحرانی اش را اجرا کرده و سعی به ورود مجدد به ناحیه بحرانی را دارد و ذاین اجازه به او داده مp0به 

flag[0] راtrue کرده و اگر بهp1سوئیچ شود، باز هم نمی تواند اجازه ورود بگیرد.

.بنابراین تلاش برای دستیابی به ناحیه بحرانی تصادفی است و امکان قخحطی وجود دارد•

.امکان ورود پی در پی یک فرایند به ناحیه بحرانی و عدم دستیابی فرایند دیگر به ناحیه بحرانی وجود دارد•



تلاش سوم•

بنابراین اگر هر دو به طور همزمان قصد ورود به ناحیه بحرانی .می کندtrueخود را flagدر تلاش دوم هر فرایند ابتدا وضعین فرایند مقاب را چک کرده و سپس •
.برای حل این مشکل  دو سطر مسئله را عوض می کنیم. و با هم وارد می شوندمیبینندfalseرا یکدیگرflagداشته باشند، 

P0(){

while(TRUE)

{

flag[0]  = TRUE;

while(flag[1]);

critical-section();

flag[0] = FALSE;

non-CS();

}

}

P1(){

while(TRUE)

{

flag[1]  = TRUE;

while(flag[0]);

critical-section();

flag[1] = FALSE;

non-CS();

}

}



.به علت امکان بن بست، شرط انتظار محدود رعایت نمی شود•

:سناریو•

در این صورت هر . کندtrueرا p1 ،flag[1]سوئیچ شود وp1، به p0در flag[1]کند ولی قبل از بررسی trueرا p0 ،flag[0]فرض کنید که •

.دوفرایند تا ابد در حلقه گرفتار شده و بن بست رخ می دهد



(ادب و تعارف)تلاش چهارم •

کرده تا خواست خود trueرا خودflagدر این روش هر فرایند متغیر . در تلاش قبلی هر فرایند می تواند روی حق خود برای ورود به بحش بحرانی اش پافشاری کند•
.را تعییر دهد تا به فرایند دیگر احترام بگذارد flagبرای ورود به بحش بحرانی را نشان دهد،اما آماده است 

کرده تا فرایند falseخود را برای مدت کوتاهی flagیعنی فرایندی که قصد ورود به ناحیه را دارد، اگر ببیند گه فرایند مقابل هم میحواهد به ناحیه بحرانی وارد شود، •
.مقابل وارد شود 

P0(){

while(TRUE)

{

flag[0]  = TRUE;

while(flag[1]){

flag[0]=FALSE;

delay();

flag[0]=TRUE;

}

critical-section();

flag[0] = FALSE;

non-CS();

}

}

P1(){

while(TRUE)

{

flag[1]  = TRUE;

while(flag[0]){

flag[1]=FALSE;

delay();

flag[1]=TRUE;

}         

critical-section();

flag[1] = FALSE;

non-CS();

}

}



.به دلیل امکان گرسنگی، شرط انتظار محدود رعایت نمی شود•

:سناریو•

.شود و فرایند مقابل به دفعات وارد ناحیه بحرانی شود(delay)چون ممکن است یک فرایند به مدت نامعلوم و بدون حد بالای مشخص، گرفتار قسمت تاخیر•

.، نیز شرط انتظار محدود رعایت نمی شودLivelockهمچنین به علت امکان وجود •

Livelockمشکل •

.وجود داردLivelockدر تلاش چهارم مشکل بن بست وجود ندارد، اما مشکل جدیدی به نام •

:با دنبال کردن اجرای زیر، این مشکل را توضیح می دهیم•

•1 )p0 ،flag[0] راtrueکند.

•2 )p1 ،flag[1] راtrueکند.

•3 )p0 ،flag[1]را بررسی کند.

•4 )p1 ،flag[0]را بررسی کند.

•5 )p0 ،flag[0] راfalseکند.

•6)p1 ،flag[1] راfalseکند.

هر دو فرایند در سیک زمان به مدت کوتاه یکسان عقب 
الا را سپس با هم بر می گردند و مراحل ب. نشینی می کنند

ود، اگر این دنباله به طور نامحدود تکرار ش. تکرار می کنند
رانی ممکن است هیچ کدام از فرایند ها نتوانند وارد ناحیه بح

.شوند
ر سرعت البته این تکرار بن بست نمی باشد، چون با تغییر د

.نسبی فرایند ها، این چرخه شکسته می شود



تلاش پنجم•

ترکیب متغیر نوبت با متغیرهای پرچم•

P0(){

while(TRUE)

{

flag[0]  = TRUE;

while(flag[1]){

if( turn == 1){

flag[0]=FALSE;

while(turn == 1) do;

flag[0]=TRUE;

}

}

critical-section();

turn = 1;

flag[0] = FALSE;

non-CS();

}

}

P1(){

while(TRUE)

{

flag[1]  = TRUE;

while(flag[0]){

if (turn == 0){

flag[1]=FALSE;

while(turn == 0) do;

flag[1]=TRUE;

}

}         

critical-section();

turn = 0;

flag[1] = FALSE;

non-CS();

}

}



را بررسی می کند که دو حالت رخ p1مربوط به flagسپس .می گذاردtrueمربوط به خود مقدار flagبخواهد وارد بحش بحرانی خود شود، در p0هنگامی که •
:می دهد

:باشدtrueبرابر flag[1]-الف •

برابر صفر شود و turnکاری انجام نمی دهد تا p0در این هنگام . کردن پرچمش منتظر می ماندfalseاحترام گداشته و با p1به p0برابر یک باشد ، turnاگر •
.می کندtrueخودش را flagسپس 

:باشدfalseبرابر flag[1]-ب•

•p0 وارد بخش بحرانی شده و بعد از خروج از بخش بحرانی، درflag خودمقدارfalse می گذارد تا بخش بحرانی را آزاد کند و درturn را قرار می دهد تا 1مقدار
.واگذاردp1حق پافشاری را به 



Deckerخلاصه ای از وضعیت تلاش های •

.مشخص شده است+ در جدول زیر، هر حا که شرط رعایت می شود با علامت •

انتظار محدود پیشرفت انتظار متقابل

+ - + تلاش اول

- + - تلاش دوم

- + + تلاش سوم

- + + تلاش چهارم

+ + + تلاش پنجم



petersonالگوریتم •

.فرایند نیز قابل تعمیم استnرا حل ساده و زیبایی را برای حل مسئله انحصار متقابل ارائه کردکه برای petersonچندین سال بعد، •

که دیرتر p1ذخیره کرده ولی turnهر دو فرایند، شماره خود را در . ، قصد ورود به ناحیه بحرانی را دارند(کمی دیرترp1)فرض کنید هر دو به طور تقریبا همزمان •
از حلقه عبور میکرده و وارد p0می رسند، whileحال زمانی که هر دو به دستور . می شود1برابرturnمی ماند و turnشماره اش را ذخیره کرده، شماره اش در 

.و وارد ناحیه بحرانی نمی شود(انتظار مشغول)در حلقه می چرخدp1ناحیه بحرانی می شود ولی 

P0(){

while(TRUE)

{

flag[0]  = TRUE;

turn = 0;

while(turn == 0 && flag[1]);

critical-section();

flag[0] = FALSE;

non-CS();

}

}

P1(){

while(TRUE)

{

flag[1]  = TRUE;

turn = 1;

while(turn == 1 && flag[0]);

critical-section();

flag[1] = FALSE;

non-CS();

}

}



(ادب و تعارف)تلاش چهارم •

.و تست می شود که تفاوتی با روش بالا نداردبرعکس مقدار دهیturnدر کتاب استالینگز، مقدار •

:، داریمp0به طور مثال برای •

turn =1;

while(turn == 1 && flag[1]);

:وجود دارندpetersonو روش deckerمعایبی که در هر یک از تلاش های •

.اگر یکی از فرایندها در داخل ناحیه بحرانی از کار بیافتد، فرایند دیگر تا ابد منتظر می ماند-1•

.متنی بر انتظار مشغول می باشند-2•



رسمافو•

.راه حل های نرم افزاری و سخت افزاری که بررسی کردیم، دارای نقاط ضعف زیادی بودند•

.سمافور قدرت زیادی در برقراری انحصار متقابل دارد و از عهده انواع مختلف مسائل همگام سازی برمی آید•

:سمافور یک ساختار شامل فیلدهای زیر است•

(counter)شمارنده صحیح -1•

.هایی که می خواهند هدر بروندwakeupشمارش تعداد •

(ذخیره سیگنال ها برای استفاده های بعدی)•

(queue)صف-2•

سمافوررویبرشدهبلوکهفرایندهاینگهداری•

Struct semaphore{

int count;

queuetype queue;

};



waitتابع •

.، یک واحد از شمارنده کم کرده و اگر منفی شود، فرایند در صف، مسدود می شودwaitتابع •

Void wait(semaphore s){

s.count = s.count – 1;

If(s.count < 0 ){

place this process in s.queue;

block this process;

}

};

C D Bs = 1

A

Blocked queue Ready queue

Processor

Semaphore

A C Ds = 0

B

Blocked queue Ready queue

Processor

Semaphore



signalتابع •

.، یک واحد از شمارنده اضافه می کند، اگر مقدار شمارنده بیشتر از صفر نشود، یک فرایند از قبل مسدود شده در صف، آزاد می شودsignalتابع •

Void signal(semaphore s){

s.count = s.count + 1;

If(s.count <= 0 ){

remove a process from s.queue;

place this process in ready queue;

}

};

.استفاده می شودsignalبجای Vیا upو از waitبجای Pیا downازمتونازبعضیدر:نکته•

B A C s = -3

D

Blocked queue Ready queue

Processor

Semaphore

B A Cs = -2

D

Blocked queue Ready queue

Processor

Semaphore



انحصار متقابل با استفاده از سمافور•

:p2و p1انحصار متقابل برای دو فرایند •

Semaphore mutex = 1;

Void p (int i){

while(TRUE){

wait(mutex);

crititcal_section();

signal(mutex);

non_critical_section();

}

}

.پیاده سازی انحصار متقابل با استفاده از سمافور، شرط های انحصار متقابل، پیشرفت و انتظار محدود را برآورده می کند:نکته•



سمافور قوی و ضعیف•

.در سمافورها از صفی برای نگهداری فرایندهای بلوکه شده استفاده می شود•

.به آن سمافور قوی می گویند و اگر چنین نباشد، به آن سمافور ضعیف می گویند( FIFO)خروج از این صف به ترتیب ورود باشد اگر•

.در سمافور ضعیف امکان گرسنگی وجود دارد•

:مثال•

B

C

C B

Queue for

semaphore lock

Value of 

semaphore lock

1

0

-1

-2

-1

0

1

Wait (lock)

Wait (lock)

Wait (lock)

Signal (lock)

Signal (lock)

Signal (lock)

A B C

بلوکه شدن روی : خط چین 

lockسمافور

ناحیه بحرانی: قرمزخط

خطوط قرمز نمی توانند همزمان 

.  اتفاق بیافتند



سمافور عمومی و دودویی•

عمومی-1•

.سمافور عمومی که آن را بررسی کردیم، شمارنده می تواند مثبت، صفر یا منفی باشددر•

دودویی-2•

.باشد1و 0دودویی، شمارنده فقط میتواند مقادیر سمافوردر•

.قدرت سمافور دودویی و عمومی برابر است•

برای سمافور باینریsignalو waitتوابع •

Void wait(semaphore s){

if (s.count = 1)

s.count = 0;

else{

place this process in s.queue;

block this process;

}

}

Void signal(semaphore s){

if(s.queue is empty)

s.count = 1;

else{

remove a process from s.queue;

place this process in ready queue;

}

}



همگام سازی با استفاده از سمافورها•

.استسازیهمگاممسائلحلدرزیادیتواناییدارایسمافور•

.با مقدار اولیه صفر استفاده می کنیمSاز سمافوری به نام . اجرا شودS2و سپس دستورS1می خواهیم ابتدا دستور : 1مثال•

.ممکن نیستS2اجرا نشود، اجرای S1تا زمانی که •

.(نیز برابر یک می باشندa,bبرابر یک و مقدار اولیه متغیرهای sمقدار اولیه سمافور )شد؟خواهدچندbوaمقدار:2مثال•

p1 p2

S1; S2;

p1 p2

S1;

signal(S);

wait(S);

S2;

p1 p2

a=a+2;

b=b+1;

signal(s);

b=b+1;

a=3;

wait(s);

b=a+b;

wait(s);

a=a+b;

p1 p2

.

.

.

a=a+2;

b=b+1;

signal(s);

.

.

b=b+1;

a=3;

wait(s);

b=a+b;

.

.

.

wait(s);

a=a+b;

.



مسئله تولید کننده و مصرف کننده•

.قرار می دهندnاندازه بهبافریدرراآنهاوتولیدرادادهنوعیبیشتر،یاکنندهتولیدیک•

.کننده، این اقلام را یکی یکی از بافر برمی داردمصرفیک•

.در هر زمان مصرف کننده یا تولید کننده می تواند به بافر دسترسی داشته باشد•

:سمافور های مورد نیاز•

با مقدار اولیه . )انحصار متقابل است، تا تولید کننده و مصرف کننده به طور همزمان به بافر دسترسی نداشته باشندشرطرعایتبرایسمافوری:mutexسمافور -1•
1)

(0با مقدار اولیه )خانه های پر بافر تعدادشمارشبرایسمافوری:fullسمافور-2•

(nبا مقدار اولیه )خالی بافر هایخانهتعدادشمارشبرایسمافوری:emptyسمافور-3•



مسئله تولید کننده و مصرف کننده•

void producer(){

int item;

while(TRUE){

item = produce();

wait(empty);

wait(mutex);

insert(item);

signal(mutex);

signal(full);

}

}

void consumer(){

int item;

while(TRUE){

wait(full);

wait(mutex);

item = remove();

signal(mutex);

signal(empty);

consume();

}

}



مسئله غذا خوردن فیلسوف ها•

.زندگی هر فیلسوف از دو دوره متناوب خوردن و فکر کردن تشکیل شده است. پنچ فیلسوف ها داریم•

(دور یک میز دایره ای پنج بشقاب و پنج چنگال قرار دارد.)جفت از بشقاب ها، یک چنگال قرار داردهربین.داردماکارونیبشقابیکفیلسوفهر•

.فیلسوف برای خوردن از دو چنگال طرفین بشقاب استفاده می کندهر•

را اگر موفق شد، برای مدتی غذا می خورد و سپس چنگال ها. شود، سعی می کند دو چنگال سمت چپ و راست خود را برداردمیگرسنهفیلسوفهرکهزمانی•
.زمین می گذارد و به فکر ادامه می دهد

.نیز باشدگرسنگیو بن بست، باید جوابگوی (که در یک زمان دو فیلسوف نمی توانند از یک چنگال استفاده کنند)انحصار متقابل مسئله تغذیه فیلسوفان علاوه بر •

semaphore room = 4;

semaphore fork[5] = {1};

void philosopher (int i){

while(TRUE){

think();

wait(room);

wait(fork[i]);

wait(fork[(i+1)%5];

eat()

signal(fork[(i+1)%5]);

signal(fork[i]);

signal(room);

}

}

void main(){

parbegin(p(0), p(1), p(2), p(3), p(4));

}

وف، دو بعد از تغذیه یک فیلس. هر فیلسوف ابتدا چنگال چپ و سپس چنگال راست را برمی دارد
.چنگالی که استفاده می کرد را روی میز گذاشته و دیگران می توانند استفاده کنند

.، برای این است که اجازه ورود به بیش از چهار نفر داده نشود4مقدار اولیه باroomسمافور 
.داشتچنگال دسترسی خواهددوبهنفریکحداقلباشند،نشستهفیلسوفچهارحداکثراگر
ی نمی شد و اجازه ورود هزمان به پنج نفر داده می شد، بن بست اتفاق ماستفادهroomاز اگر

.افتاد



مسئله خوانندگان و نویسندگان•

.در این مسئله، ناحیه داده ای مثل فایل وجود دارد که بین تعدادی از فرایندها مشترک است•

.بنویسندآندرخواهندمینویسندهفرایندهایوبخوانندناحیهاینازخواهندمیخوانندهفرایندهای•

:مسئلهاینشرایط•

.بخوانندفایلازهمزمانصورتبهتوانندمیخوانندگانازتعدادهر-1•

.هر زمان تنها یک فرایند ممکن است در این فایل بنویسددر-2•

.هنگامی که نویسنده ای در حال نوشتن است، هیچ خواننده ای نمی تواند فایل را بخواند-3•

.ندبرای مثال یک سیستم رزرواسیون هواپیمایی را در نظر بگیرید که تعداد زیادی فرایند در آن برای نوشتن و خواندن با یکدیگر رقابت می کن•

گان، نباید به بخوانند ولی اگر یک فرایند در حال به روز رسانی پایگاه داده باشد، فرایندهای دیگر حتی خوانندرادادهپایگاههمزمانمی توانند به طورفرایندچند•
.پایگاه داده دسترسی داشته باشند



خوانندگان اولویت دارند•

.وجود دارد، به خوانندهه اجازه ورود می دهیمایخوانندهکهزمانیتا•

اعمال انحصار متقابل: wسمافور•

rcمتناسبتغییرازاطمینان:mutexسمافور•

شمارش تعداد خوانندگان:rcمتغیر سراسری •

typedef int semaphore;

semaphore mutex=1;

semaphore w=1;

int rc=0;

void writer(){

while(TURE){

wait(w);

writing();

signal(w);

}

}

void reader(){

while(TURE){

wait(mutex);

rc=rc+1;

if(rc==1) wait(w);

signal(mutex);

reading();

wait(mutex);

rc = rc – 1;

if(rc==0) signal(w);

signal(mutex);

}

}



.(در صورتی که نویسنده ای فعال نباشد. )اول، به اولین حوالننده اجازه ورود داده می شودifتوسط •

.ازه داده شودکنیم که اگر خواننده فعال دیگری وجود نداشته باشد، در صورت اینکه نویسنده بلوکه شده ای داشته باشیم، به آن اجمیبررسیپایانی،ifتوسط•

.نویسندگان وجود داردگرسنگیرعایت نمی شود، چون امکان انتظار محدود در مسئله خوانندگان و نویسندگان در حالتی که خوانندگان اولویت دارند، •


